

Москва, 29 сентября - 1 октября

МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ И ВЫСТАВКА

РЕЛЕЙНАЯ ЗАЩИТА И АВТОМАТИКА ЭНЕРГОСИСТЕМ 2021

Разработка автоматики предотвращения нарушения устойчивости с выбором управления в переходном режиме работы энергосистемы

Васильев В.В., к.т.н., Филиал АО «СО ЕЭС» ОДУ Юга Лизалек Н.Н., д.т.н., НГТУ, АО «ИАЭС» Сацук Е.И., д.т.н., АО «СО ЕЭС» Россия

Васильев Владимир Владимирович

Классификация видов ПА

противоаварийное Автоматическое управление предназначено ДЛЯ выявления, предотвращения развития и ликвидации аварийного режима энергосистемы

«Комплекс устройств противоаварийной автоматики создает глубоко резервированную систему предотвращения развития повреждения, распространяющуюся от отключения поврежденного элемента сети к сохранению устойчивости энергосистемы и до деления энергосистемы при асинхронном ходе, предотвращения лавины частоты и напряжения,

(Б. И. Иофьев. Автоматическое аварийное управление мощностью энергосистем, 1973 г.)

Автоматика предотвращения нарушения устойчивости. Основные принципы организации

Структура организации централизованной АПНУ

Выбор УВ по

принципу II-ДО

Устройство верхнего Выбор УВ по принципу І-ДО уровня ЦСПА Реализация УВ ЛАПНУ ЛАПНУ района района

управления N

Верхний уровень – ЦСПА

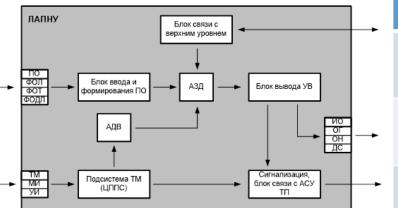
- Выбор УВ по принципу І-ДО;
- Использование расширенной модели и информации ОИК;
- Учет текущих величин ступеней управления.

Нижний уровень – ЛАДВ

- Выбор УВ по принципу ІІ-ДО;
- Использование специализированной системы сбора информации.

Структура организации локальной АПНУ

управления 2


ЛАПНУ

района

управления 1

Структурно-функциональная схема ЛАПНУ

Минимизация объемов управляющих воздействий

Учет фактических объемов ступеней управляющих воздействий

Обеспечение противоаварийного управления в любых схемнорежимных условиях

Максимальное использование пропускной способности связей

Автоматика предотвращения нарушения устойчивости. Особенности, проблемы, недостатки

Выбор УВ для расчетных, заранее определенных аварийных возмущений. Необходимость использования пусковых сигналов

Контролируются параметры доаварийного режима средствами систем телемеханики

Сложно масштабируемые системы

І-ДО: большой объем постоянно выполняемых расчетов, обеспечение расчетного цикла (30 сек)

II-ДО: большой объем предварительных расчетов, «грубая» дозировка

Отсутствие координации в действиях ЛАПНУ смежных энергорайонов

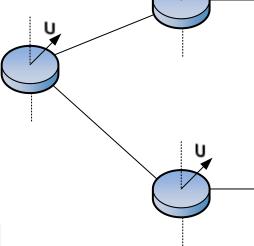
Сложность определения дозировки УВ при повреждениях с наложением нескольких аварийных событий

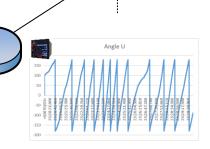
Применение и развитие технологии СВИ в ЕЭС России ту<mark>альная информация о внедрении устройств и комплексов СМПР в ЕЭС России</mark> lo состоянию на 01.01.2020 г. в ЕЭС России устройства и комплексы СМПР установлены: в ДЦ АО "СО ЕЭС": региональные КСВД - в трех РДУ и семи ОДУ; главный КСВД - в ЦДУ) На объектах электроэнергетики установлены ПТК СМПР, включающие: 829 УСВИ и 84 КСВД.

https://www.smpr.technology/

Технология СВИ, первоначально используемая для построения системы мониторинга переходных режимов (СМПР), успешно развивается в России уже более 15 лет и применяется для следующих задач оперативно-диспетчерского управления:

- визуализация динамики изменения частоты и напряжения в Единой энергосистеме России на 3D-поверхности в режиме реального времени;
- мониторинг работы системных регуляторов;
- оценивание состояния контролируемого оборудования;
- **пост-аварийный анализ** с повторным воспроизведением события в реальном масштабе времени и демонстрации архива технологических нарушений;
- мониторинг и анализ синхронных качаний активной мощности в контролируемых сечениях энергосистем в режиме реального времени.

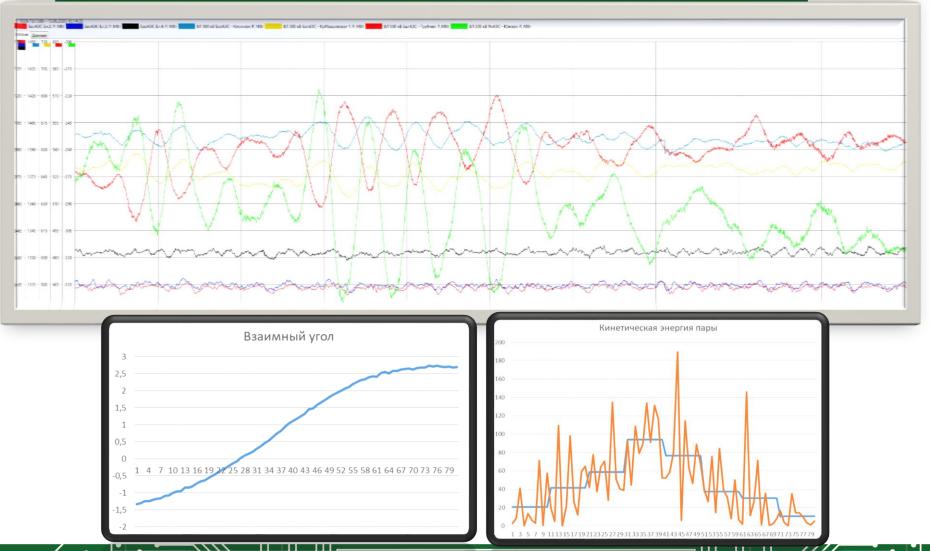

Исследование процессов распада синхронизма на основе анализа электромеханических волн


Колебания происходят в виде противоположно направленных движений смежных областей системы

Топология колебательных движений определена их волновым характером

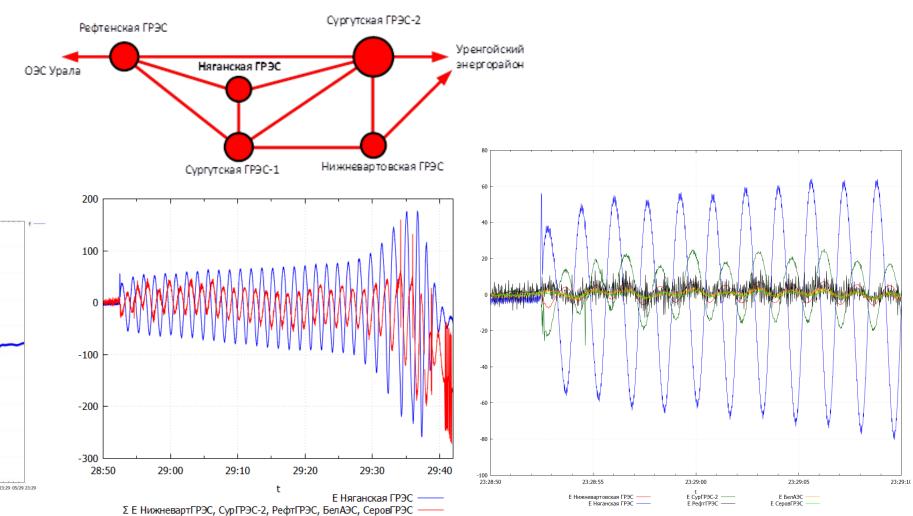
Волновой подход, применяемый для выявления структуры движения, позволяет рассматривать процессы с физической точки зрения: а именно, распад синхронизма энергосистемы как совокупность волнового процесса становления колебательной структуры и развития неустойчивого движения между возникающими объектами этой колебательной структуры

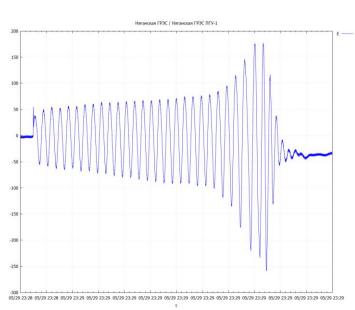
TOTAL STREET, TO

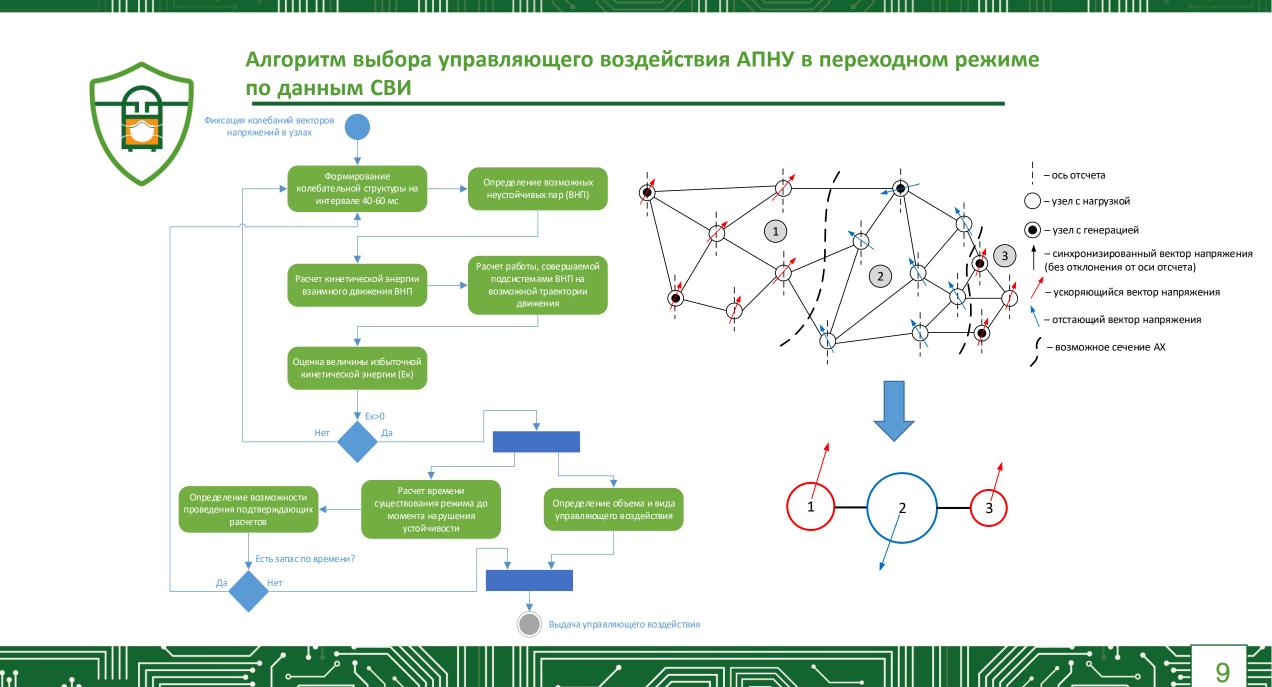


Изменение структуры неустойчивости при изменении тяжести возмущения

Изменение местоположения слабого звена, достигающего критического состояния первым


Исследование процессов распада синхронизма на основе анализа электромеханических волн





Исследование процессов распада синхронизма на основе анализа электромеханических волн

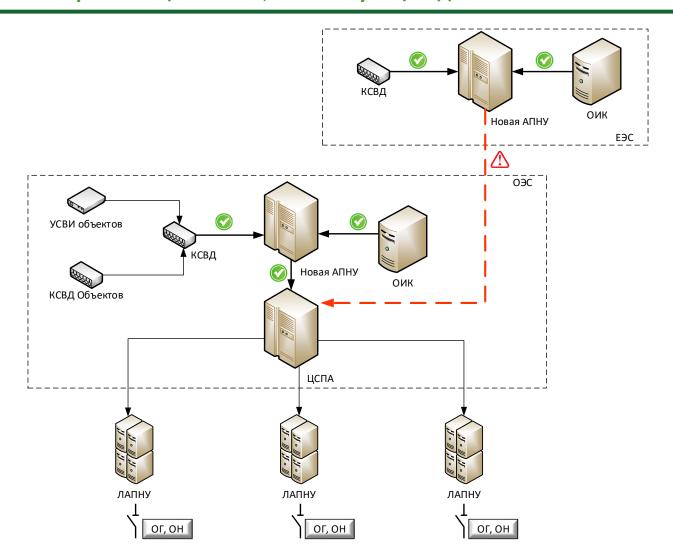


Схема организации АПНУ, использующей данные СВИ

Разработка АПНУ с выбором управления в переходном режиме по данным СВИ

Сильные стороны (Strengths)

- 1. Запуск расчетного цикла для выбора управляющих воздействий только при возникновении возмущений.
- 2. Отсутствие необходимости использования пусковых органов.
- 3. Легко масштабируемая система.
- 4. Реагирует на любое возмущение в системе.

SWOT

Возможности (Opportunities)

- Прогнозирование возникновения нарушения устойчивости.
- Использование выбора управляющих воздействий по принципу I-ПОСЛЕ.
- 3. Выполнение АПНУ на уровне ЕЭС России.

Слабые стороны (Weaknesses)

- 1. Обеспечение необходимого быстродействия в части получения данных СВИ.
- 2. Использование инфраструктуры существующей ЦСПА.

Угрозы (Threats)

- 1. Проблемы взаимодействия с ЦСПА.
- 2. Недостаточная оснащенность устройствами СВИ.
- 3. Необходимость пересмотра существующей структуры ПАУ и действующих НТД.

СПАСИБО ЗА ВНИМАНИЕ!

Васильев Владимир Владимирович

VasilevVLV@yug.so-ups.ru, v_v_vasiliev@mail.ru

(8793)34-86-52, +7-903-904-0049