

Москва, 29 сентября - 1 октября

МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ И ВЫСТАВКА

РЕЛЕЙНАЯ ЗАЩИТА И АВТОМАТИКА ЭНЕРГОСИСТЕМ 2021

СИСТЕМНАЯ АВТОМАТИКА ДЛЯ MINIGRID, РАБОТАЮЩЕЙ В ОБЩЕЙ ЭЛЕКТРИЧЕСКОЙ СЕТИ

Т. А. ВОЛКОВА*, ГИЛЕВ О.В.**, ГОЛОВКИН В.В.**, ИВКИН Е.С., НЕСТУЛЯ Р.В.***, СЕРДЮКОВ О.В.***, ФИШОВ А.Г.

АО «Россети Тюмень»*, ООО «Генерация Сибири»**
ООО «Модульные системы Торнадо»***, ФГБОУ ВО НГТУ

Россия

ФИШОВ АЛЕКСАНДР ГЕЛОГИЕВИЧ

Minigrid – **ЦЕЛИ СОЗДАНИЯ И СИСТЕМНЫЕ ЭФФЕКТЫ**

Основными целями создания и развития распределенных Минигрид являются:

- Повышение надежности энергоснабжения,
- Снижение потерь от передачи электрической энергии (ЭЭ),
- Повышение экономичности режимов выработки ЭЭ и тепловой энергии (ТЭ) на мини электростанциях.
- *Главное* развитие энергетики за счет инвестиций малого и среднего бизнеса.

Системные эффекты

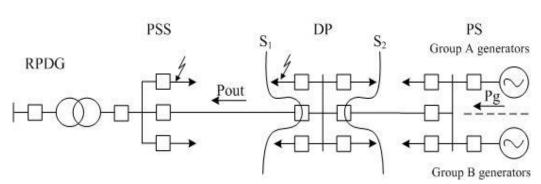
- Повышение надежности энергоснабжения потребителей в Минигрид и внешней электрической сети
- Повышение качества электроэнергии по частоте в Минигрид в режиме параллельной работы
- Повышение качества электроэнергии по напряжению в районе присоединения к внешней электрической сети
- Повышение устойчивости режимов электростанции Минигрид
- Снижение потребности в резервных генерирующих и сетевых мощностях
- Выдача свободных генерирующих мощностей и энергии Минигрид во внешнюю сеть
- Повышение экономичности режима выработки ЭЭ на энергоблоках электростанции Минигрид
- Снижение потерь мощности в сети в результате объединения
- Возможность снижения тарифов для населения Выгодные договора для потребителей (юридические лица)

АВТОМАТИКА – ОБЩАЯ СТРУКТУРА

Автооператор Подсистема контроля и измерений

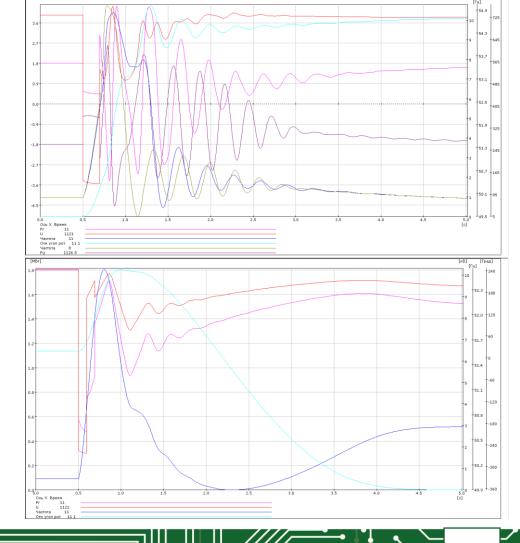
Подсистема блокировок и превентивных действий

Системная автоматика Minigrid


Режимная автоматика

Противоаварийная автоматика Подсистема сигнализации и визуализации

ОПЕРЕЖАЮЩЕЕ СБАЛАНСИРОВАННОЕ ОТДЕЛЕНИЕ Minigrid – основа предотвращения нарушений устойчивости режима



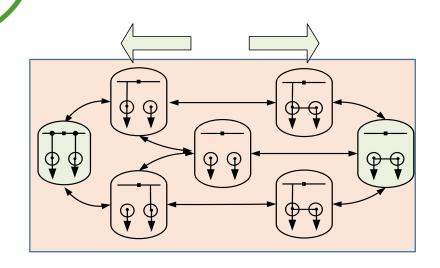
Переходный процесс в схеме при проходящем трехфазном коротком замыкании на шинах ПС 110 кВ внешней электрической сети

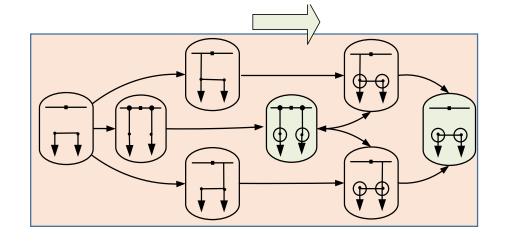
с нарушением устойчивости режима без отделения Minigrid от внешней электрической сети

Переходный процесс в Minigrid без нарушения устойчивости режима при проходящем трехфазном коротком замыкании на шинах ПС 110 кВ внешней электрической сети с опережающим сбалансированным отделением Minigrid от внешней электрической сети

Поддержание готовности к спорадическому отделению Minigrid режимной автоматикой и автооператором

• Участок 3 – включена вся нагрузка Minigrid. Мощности генераторов Minigrid недостаточно для покрытия нагрузки с заданным коэффициентом запаса 1,2.


Автооператор перевел ведущий генератор в режим регулирования нулевого перетока по сечению S2, а остальные в режим долевого участия в мощности ведущего генератора. В этом режиме Minigrid готова к аварийному сбалансированному отделению по сечению S2.


• Участок 4 – отключена часть нагрузки Minigrid.

Система вернулась в состояние участка 1 с готовностью сбалансированного отделения по сечению S1.

Создание, восстановление нормального режима и смена состояний Minigrid автооператором

Реконфигурация структуры Minigrid в нормальных условиях

Восстановление нормального режима после его нарушений

Функционал автоматики

Оперирование

Изменение структуры Minigrid, ее регуляторов, режимов взаимодействия с внешней электрической сетью осуществляет интеллектуальный Автооператор

Режимное управление

Согласованное регулирование всех режимных параметров и поддержание готовности Minigrid к противодействию аварийным возмущениям обеспечивается комплексом регуляторов с адаптируемой автооператором структурой

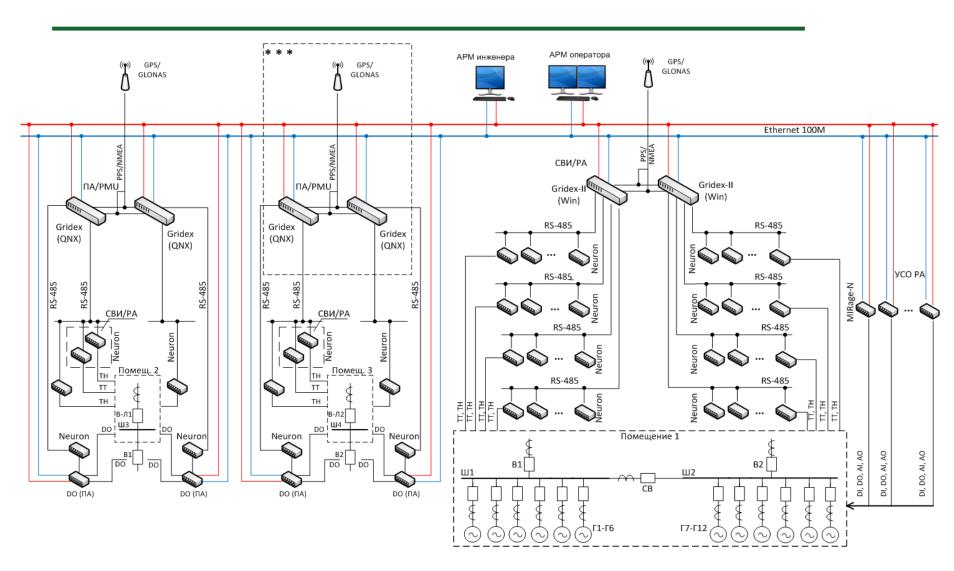
Противоаварийное управление

Минимизация последствий аварийных возмущений (при неизбежных коротких замыканиях в электрических сетях) обеспечивается экспресс сбалансированным отделением Minigrid от внешней электрической сети с последующим автоматическим восстановлением нормального режима

Контроль и измерение

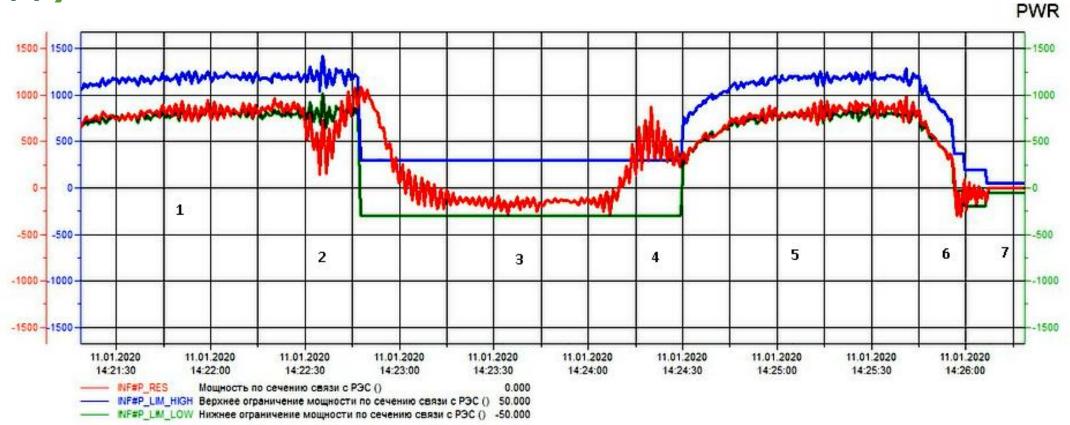
Используется локальная система векторных измерений режимных параметров с синхронизацией от спутников

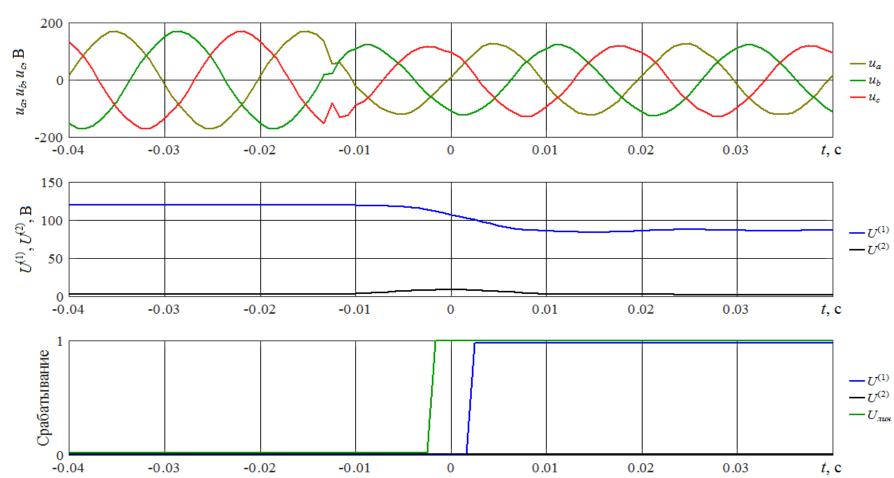
Блокировка и превентивные действия

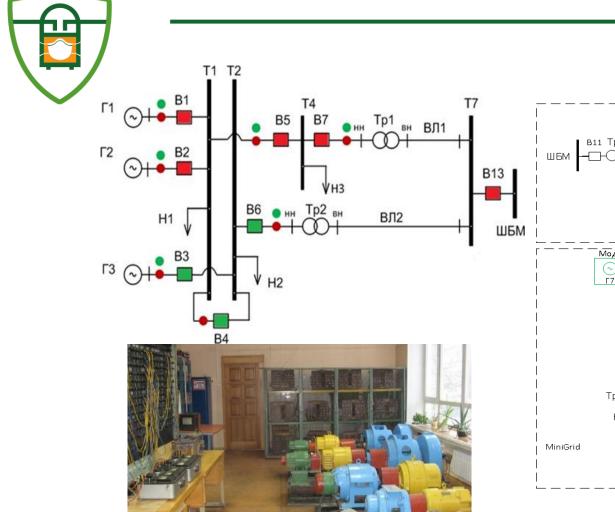

Система исключает ошибочные действия персонала с негативными последствиями и адаптирует Minigrid для минимизации рисков при нарушениях нормальных условий работы за счет изменения классов ее состояний

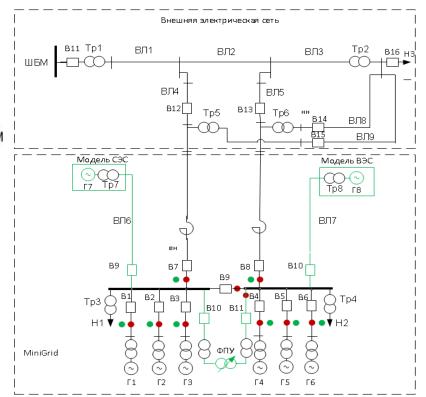
Сигнализация и визуализация

Система имеет современный интерфейс, предоставляет возможности дистанционного мониторинга и управления

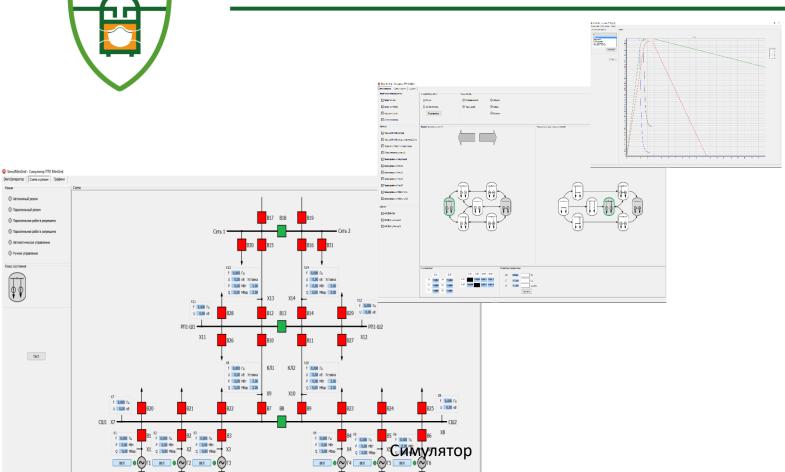

Структура аппаратных средств


Pабота Minigrid под управлением автооператора и режимной автоматики



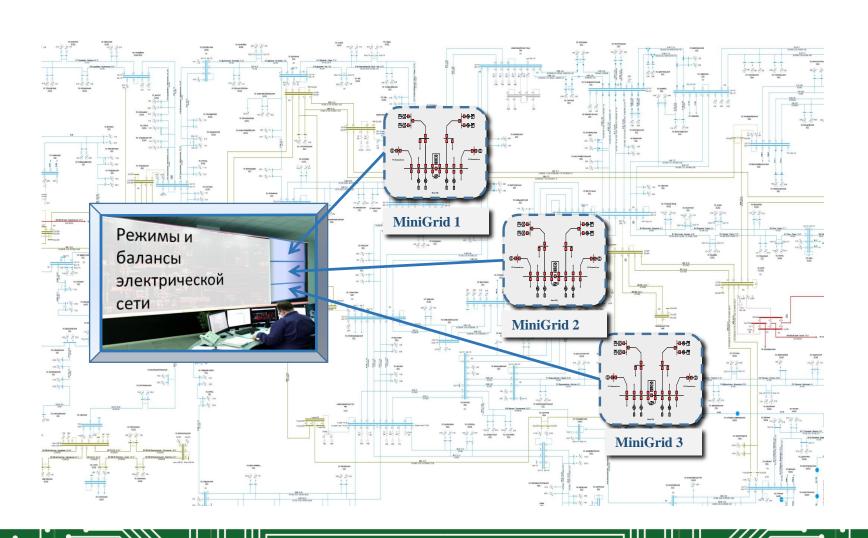

Работа пускового органа

Физические модели Minigrid в НГТУ и НИУ МЭИ



Компьютерный тренажер для подготовки диспетчеров Minigrid

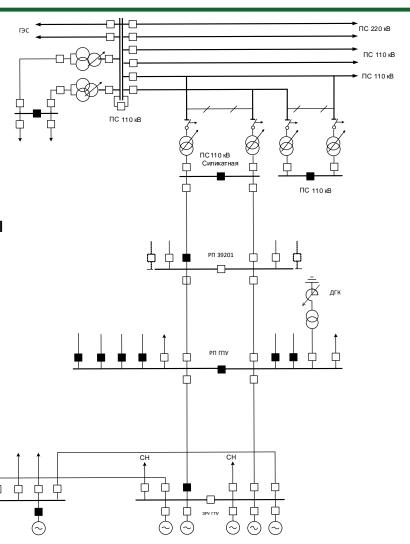
Симулятор работы MiniGrid с ПТК


- визуализация параметров режима MiniGrid, состояний и действий ПТК
- автоматическое (от ПТК) и ручное управление MiniGrid
- библиотека сценариев управления с переводом в деморежим

Тренажёр персонала MiniGrid по использованию ПТК

- Режим заданных тренировок
- Режим случайных событий
- Анализатор правильности действий

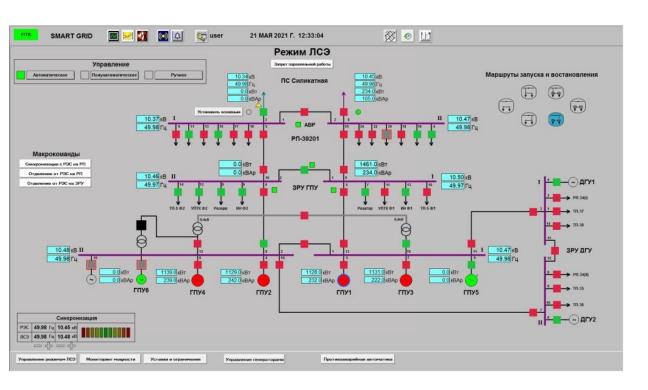
Мониторинг режимов группы Minigrid в ЦУС

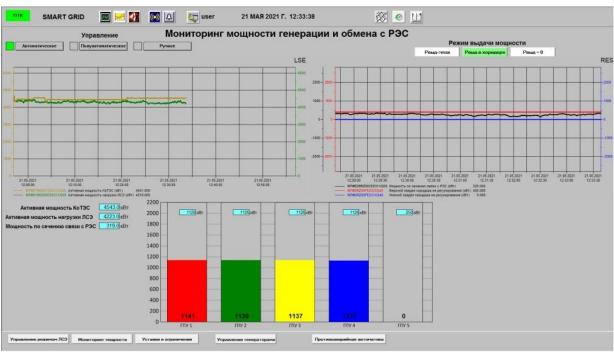


Реализация пилотного проекта Minigrid на базе локальной системы энергоснабжения жилмасива «Березовое» в г. Новосибирск

Оборудование КоТЭС

- ГПУ Caterpillar_G3520C 5x2MBт
- Водонагревательные котлы 2x5 МВт и 2x10МВт;
- о ДГУ 2х1.6МВт





Главная схема ЛСЭ

Мониторинг мощности генерации и обмена с принимающей энергосистемой

выводы

При параллельной работе набросы, сбросы мощности в эксплуатационных режимах распределяются между внешней электрической сетью и Minigrid, причем большую часть берет на себя внешняя сеть, что исключает неустойчивую работу энергоблоков, а сбалансированное опережающее отделение Minigrid от внешней сети снимает угрозы возникновения асинхронных режимов, недопустимых динамических моментов на валах синхронных генераторов при КЗ во внешней сети, недопустимую подпитку токов короткого замыкания.

ЗАКЛЮЧЕНИЕ

Предложено малозатратное техническое решение для присоединения Minigrid с синхронной МГ к электрической сети централизованного электроснабжения с параллельной работой генераторов.

Разработана автоматика управления режимом параллельной работы Minigrid с внешней энергосистемой, проведены ее успешные испытания, подтверждено соответствие предъявляемым требованиям.

СПАСИБО ЗА ВНИМАНИЕ!

Контакты:

Фишов Александр Георгиевич

т. +7 9139370116

Fishov@ngs.ru