

Москва, 29 сентября - 1 октября

МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ И ВЫСТАВКА

РЕЛЕЙНАЯ ЗАЩИТА И АВТОМАТИКА ЭНЕРГОСИСТЕМ 2021

Анализ и перспективы применения стандарта МЭК 61850 для ГЭС и ГАЭС

Жуков Д.А., Головин А.В.

ПАО «РусГидро», ООО «ТЕКВЕЛ»

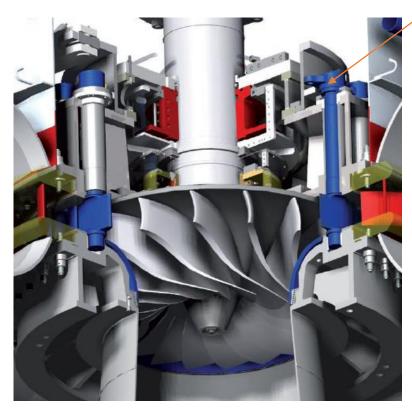
Российская Федерация

Жуков Дмитрий Андреевич

НОРМАТИВНЫЕ ДОКУМЕНТЫ МЭК

МЭК 61850-7-410, Ред. 2.1

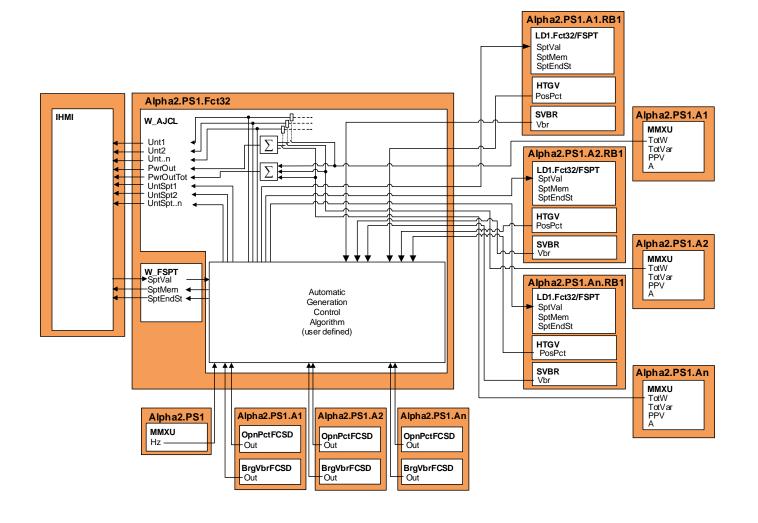
МЭК 61850-7-510, Ред. 1.0



- **HNHD** Водоприёмник
- HRES Водохранилище
- **HTUR** Турбина
- **HSST** Уравнительный резервуар
- НОАМ Плотина
- **HCOM** Комбинатор
- **HVLV** Запорная арматура
- **HJCL** Групповое регулирование
- и др.

- Классы ЛУ, присутствовавшие в МЭК 61850-7-410:2007, которые не были специфичны для ГЭС/ГАЭС, перемещены в МЭК 61850-7-4
- Добавлены классы ЛУ общего назначения, отсутствующие в МЭК 61850-7-4, но необходимые для моделирования систем управления/мониторинга ГЭС/ГАЭС.
- Обновлены определения классов ЛУ

ПРИМЕР: HTGV – НАПРАВЛЯЮЩИЙ АППАРАТЫ ГИДРОТУРБИНЫ


HTGV

DataName	Туре	Explanation
Mod	ENC	Режим работы
OpCntRs	INC	Сброс счетчика срабатываний
PosSpt	APC	Уставка положения
DithAct	SPC	Активировать колебания
PosCls	SPS	Затвор закрыт
PosOpn	SPS	Затвор открыт
SMLkdCls	SPS	Серводвигатель зафиксирован в
		закрытом положении
SMLkdMnt	SPS	Серводвигатель зафиксирован в
		положении технического обслуживания
PosPct	MV	Положение в % от полного открытия
PosDeg	MV	Угол открытия

примеры моделирования функций согласно мэк 61850-7-510

- Групповое регулирование активной и реактивной мощности
- Регулирование напряжения
- Планирование выработки электроэнергии
- Система возбуждения
- Управление турбиной
- и др.

СТАНДАРТИЗАЦИЯ ОПИСАНИЯ ТИПОВЫХ ФУНКЦИЙ ТЕХНОЛОГИЧЕСКОЙ АВТОМАТИКИ И ПТК ГЭС/ГАЭС

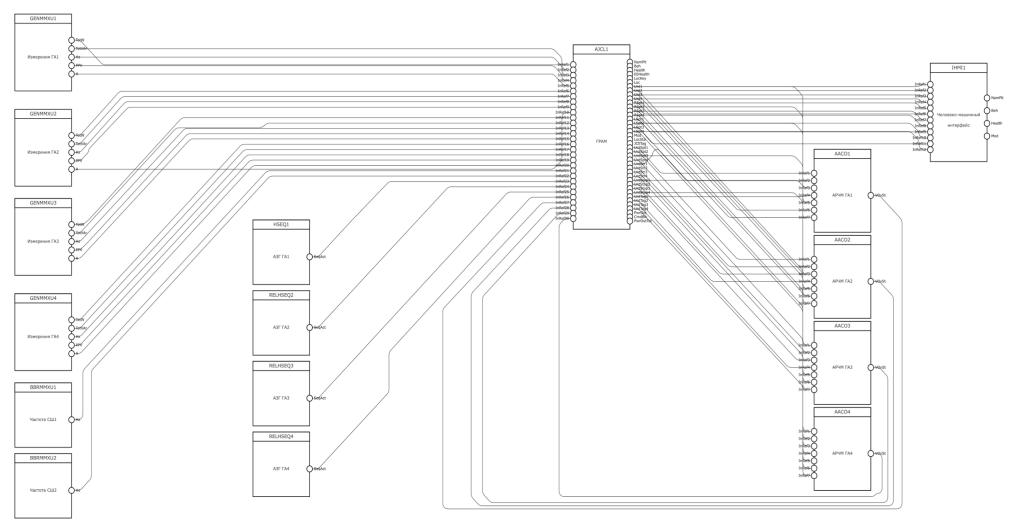

- ПТК САУ гидроагрегата
- ПТК Системы возбуждения (контроллер регулятора возбуждения)
- ПТК АРЧМ (контроллер регулятора частоты вращения и активной мощности)
- ПТК Виброконтроля
- АУВ генератора
- ПТК ГРАМ
- ПТК ГРНРМ
- ПТК РУСА (рационального управления составом агрегатов)
- ПТК АБП (дизель генератора)
- ПТК Мониторинга ГТС
- ПТК АРЗ (аварийно-ремонтных затворов)
- ПТК Затворов водосливной плотины
- ПТК ЭТО (электротехнического оборудования)
- ПТК ЩПТ (щит постоянного тока)
- ПТК Системы пожарной сигнализации

Фото: ПАО «РусГидро»

ПРИМЕР МОДЕЛИРОВАНИЯ ГРАМ

выводы

- Стандарт МЭК 61850 предоставляет все необходимые инструменты и базу для стандартизации описания функций технологической автоматики ГЭС/ГАЭС.
- Результаты работы ПАО «РусГидро» обеспечат возможность типизации технических решений с использованием стандарта МЭК 61850, в совокупности с другими инструментами стандарта МЭК 61850, позволят достичь сокращения сроков проектирования и пуско-наладочных работ систем автоматизации ГЭС/ГАЭС, повысить эффективность их эксплуатации.
- Успех применения стандарта для систем управления ГЭС/ГАЭС будет зависеть от настойчивости и последовательности эксплуатирующих организаций и разработчиков решений в вопросах типизации функций управления и их представления в информационной модели МЭК 61850.

СПАСИБО ЗА ВНИМАНИЕ!

Контакты:

Жуков Дмитрий Андреевич, ZhukovDA@rushydro.ru