

МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ И ВЫСТАВКА

РЕЛЕЙНАЯ ЗАЩИТА И АВТОМАТИКА ЭНЕРГОСИСТЕМ 2021

Основы универсальной методики задания уставок с использованием теории прообразов

И.Ю. Никонов, И.Е. Петряшин

ООО «Релематика»

Россия

Докладчик: Никонов Иван Юрьевич

ВВЕДЕНИЕ

Требуется обеспечить срабатывание в максимальном числе отслеживаемых режимов при надежном несрабатывании защиты в альтернативных режимах.


Гарантированно возможно обеспечить селективность только лишь в одном случае — перебирая все возможные режимы работы защищаемого объекта. Однако, эта задача не имеет прямого решения (точнее, оно есть, но невозможно провести расчет при текущем уровне развития технологий).

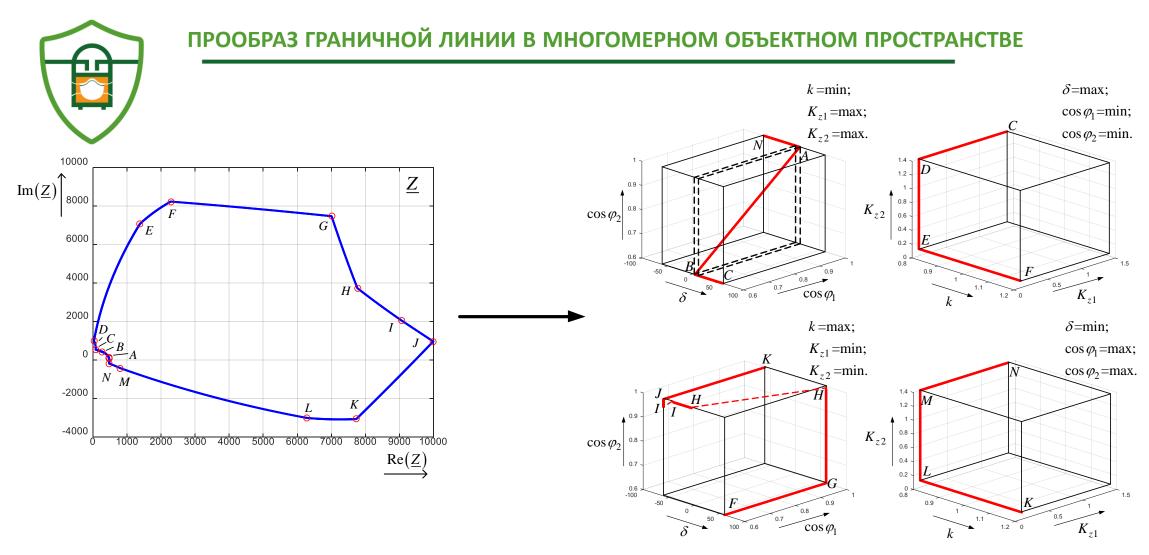
Альтернативный метод решения — замена перебора всех возможных режимов расчетом их небольшого числа, сохранив при этом все свойства прямого перебора.

исследуемый объект

N₀	Параметр		Значения	
740			Нижнее	Верхнее
1	Угол передачи	δ , град	-60	60
2	Коэффициент передачи	<i>k</i> , o.e.	0.8	1.2
3	Коэффициент загрузки трансформатора первой отпайки	K_{z1} , o.e.	0.1	1.4
4	Коэффициент мощности нагрузки отпайки №1	$\cos \varphi 1$, o.e	0.6	1.0
5	Коэффициент загрузки трансформатора второй отпайки	K_{z2} , o.e.	0.1	1.4
6	Коэффициент мощности нагрузки отпайки №2	$\cos \varphi 2$, o.e	0.6	1.0

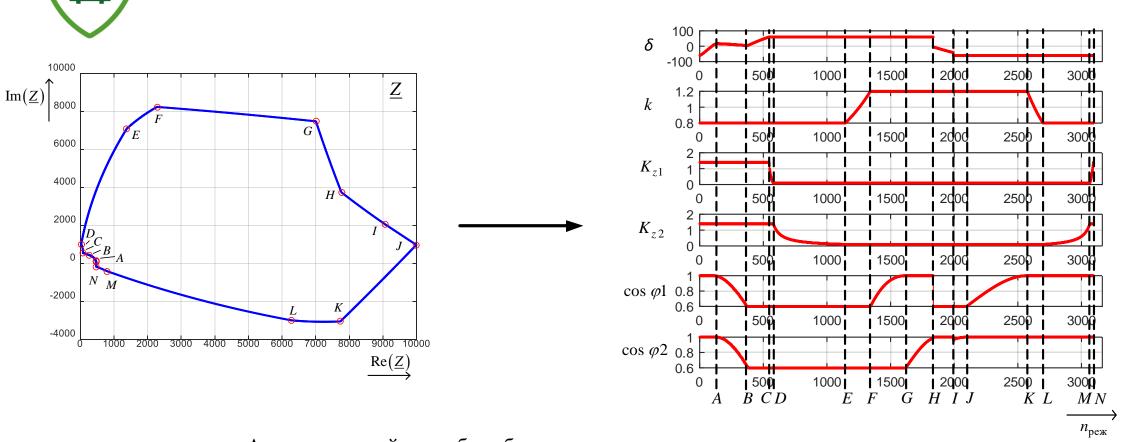
Имитационная модель исследуемой системы

ОТОБРАЖЕНИЕ ЗАМЕРА НА ПЛОСКОСТИ


Рассматривается замер, являющийся функцией наблюдаемых параметров:

$$\underline{Z} = f(\underline{U}_s, \underline{U}_r, \underline{I}_s, \underline{I}_r)$$

где \underline{U}_s , \underline{U}_r — напряжения в местах установки защиты; \underline{I}_s , \underline{I}_r — токи в местах установки защиты.


Граничная линия области отображения режимов при отображении режимов имитационной модели на плоскость \underline{Z}

Переход от граничной линии к прообразу граничной линии в объектных подпространствах

ВАРИАЦИИ ОБЪЕКТНЫХ ПАРАМЕТРОВ, СООТВЕТСТВУЮЩИХ ГРАНИЧНЫМ РЕЖИМАМ

выводы

- Предлагаемый метод решает проблему наглядного отображения прообраза в многомерном объектном пространстве любой размерности, что является наиболее подходящей основой для построения наиболее универсальной методики задания уставок релейной защиты.
- Селективности защиты дальнего резервирования гарантируется благодаря использованию методов теории обучаемой многомерной релейной защиты, позволяющих заменить расчет множества возможных режимов имитационной модели расчетом сравнительно небольшого числа режимов.

СПАСИБО ЗА ВНИМАНИЕ!

Контакты:

Никонов И.Ю. – ivan04031997@gmail.com

Петряшин И.Е. – petryashin_ie@relematika.ru